Unit Computation in Purely Cubic Function Fields of Unit Rank 1
نویسندگان
چکیده
This paper describes a method for computing the fundamental unit and regulator of a purely cubic congruence function field of unit rank 1. The technique is based on Voronoi’s algorithm for generating a chain of successive minima in a multiplicative cubic lattice which is used for calculating the fundamental unit and regulator of a purely cubic number field.
منابع مشابه
Ideal Arithmetic and Infrastructure in Purely Cubic Function Fields Ideal Arithmetic and Infrastructure in Purely Cubic Function Fields
This paper investigates the arithmetic of fractional ideals and the infrastructure of the principal ideal class of a purely cubic function eld of unit rank one. We rst describe how irreducible polynomials split into prime ideals in purely cubic function elds of nonzero unit rank. This decomposition behavior is used to compute so-called canonical bases of fractional ideals; such bases are very s...
متن کاملInfrastructure, Arithmetic, and Class Number Computations in Purely Cubic Function Fields of Characteristic at Least 5
One of the more difficult and central problems in computational algebraic number theory is the computation of certain invariants of a field and its maximal order. In this thesis, we consider this problem where the field in question is a purely cubic function field, K/Fq(x), with char(K) ≥ 5. In addition, we will give a divisor-theoretic treatment of the infrastructures ofK, including a descript...
متن کاملIdeal Arithmetic and Infrastructure in Purely Cubic Function Fields
This paper investigates the arithmetic of fractional ideals of a purely cubic function field and the infrastructure of the principal ideal class when the field has unit rank one. First, we describe how irreducible polynomials decompose into prime ideals in the maximal order of the field. We go on to compute so-called canonical bases of ideals; such bases are very suitable for computation. We st...
متن کاملVoronoi's algorithm in purely cubic congruence function fields of unit rank 1
The first part of this paper classifies all purely cubic function fields over a finite field of characteristic not equal to 3. In the remainder, we describe a method for computing the fundamental unit and regulator of a purely cubic congruence function field of unit rank 1 and characteristic at least 5. The technique is based on Voronoi’s algorithm for generating a chain of successive minima in...
متن کاملVoronoi’s Algorithm in Purely Cubic Congruence Function Fields
The first part of this paper classifies all purely cubic function fields over a finite field of characteristic not equal to 3. In the remainder, we describe a method for computing the fundamental unit and regulator of a purely cubic congruence function field of unit rank 1 and characteristic at least 5. The technique is based on Voronoi’s algorithm for generating a chain of successive minima in...
متن کامل